CENTRE D'ÉTUDE SUR L'ÉVALUATION DE LA PROTECTION DANS LE DOMAINE NUCLÉAIRE

ALARA in Decommissioning: The point of view of the ISOE WG-DECOM

CEDU

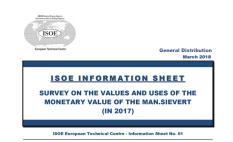
Information System on Occupational Exposure

ALARA for Decommissioning and Site Remediation Workshop

Ludovic Vaillant On behalf of ISOE WG DECOM

Content

серп


- ISOE and the WG DECOM
- ALARA
- Decommissioning
- ALARA and decommissioning
- Concluding remarks

ISOE and the WG DECOM

- ISOE stands for Information System on Occupational Exposure <u>www.isoe-network.net</u> -.
 - Created in 1992 and sponsored by NEA/OECD and IAEA, it consists in a broad network of RP experts:
 - 76 utilities,

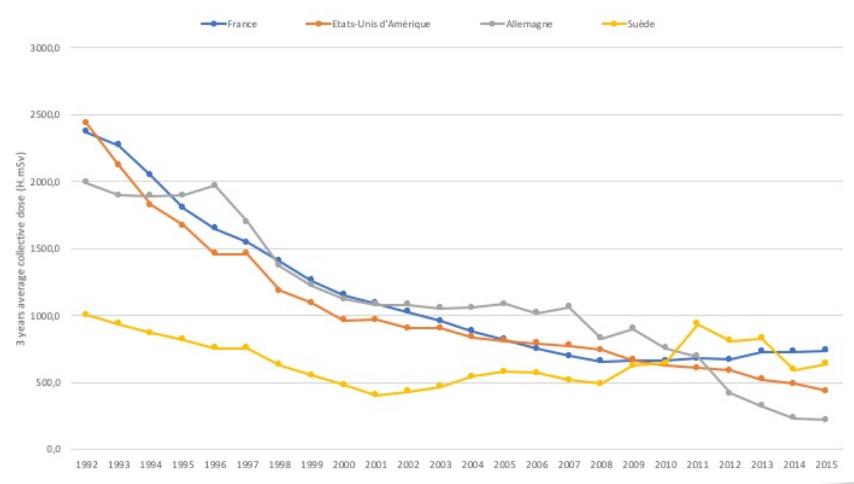
CEDN


- 28 regulatory bodies,
- 29 countries.
- A great resource in order to share practices (ISOE Symposium & Forum), benchmark (ISOE Database), improve performances (ISOE Reports) and thus reduce occupational exposures in operating nuclear power plant.

he Information System on Occupational Exposure (ISOE) System was created in 1992 to provide a forum for radiation
rotection professionals from nuclear electricity utilities and national regulatory authorities worldwide to share dose
eduction information, operational experience and information to improve the optimisation of radiological prot
t pur lear power plants

L Username	
Password	
Remember Me	

ISOE and the WG DECOM


- серп
- Since early 2000ies, decommissioning has became a growing subject in OECD countries. A need for a network of radiation protection (RP) experts in order to discuss RP and related issues relevant to such activities was identified, leading to the creation of ISOE WG DECOM (Working Group on Radiological Aspects of Decommissioning Activities in Nuclear Power Plants).
- WG DECOM is a network of RP experts from utilities and Authorities who are involved in NPP decommissioning projects. Its work is based on a comprehensive understanding of national contexts and operational experiences exchanges/gathering.

cepn

- According to ICRP 103, 'the principle of optimisation is defined by the Commission as the source related process to keep the likelihood of incurring exposures (where these are not certain to be received), the number of people exposed, and the magnitude of individual doses as low as reasonably achievable, taking economic and societal factors into account'.
- In practice, implementation of ALARA in nuclear power plant in operation relies on many factors:
 - Financial aspects,
 - Organization (engage the management and workers),
 - Human and technical resources (RP staffing),
 - Training of RP staff and information of workers (building competence),
 - Experience of routine maintenance work (feedback, improvement, culture),
 - Networking (a nuclear industry challenge),
 - Facility knowledge (characterisation),
 - Source term management (Zn injection, primary coolant purification, etc.),
 - Etc.

серп

 In addition to a noticeable decrease of collective exposures, average individual dose in nuclear power plant in operation is about 1 to a few mSv.y-1.

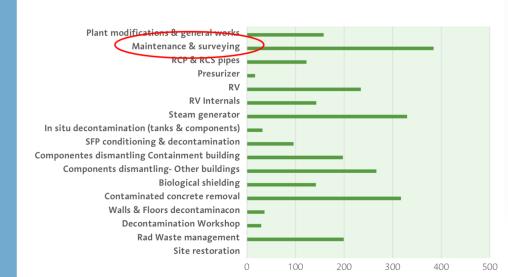
Decommissioning

серп

- A 10 to 15 years project which costs a lot for no profit (kWh). Range from 600 to 800 M€ (EPRI) and it's increasing (see Songs 2 and 3 for instance).
- Various strategies:
 - Immediate (IAEA and Authorities),
 - Differed (safe store: often linked to funding),
 - Entombment.
- Waste management often seen as a driving factors of the overall project as well as the final end-state.
- But, collective exposures easily reach a few H.Sv per reactor (Zion: 4 to 5 H.Sv, Jose Cabrera: 3 H.Sv, Songs 1: 3 H.Sv) and RP staff face huge challenges with increase potential for internal contamination, asbestos, lead, etc. which must be carefully dealt with (holistic approach).
- And it's a political and societal challenge.

ALARA and decommissioning

- If we move back to what explains success in operation:
 - Financial aspects,
 - Organization (engage the management and workers),
 - Human and technical resources (RP staffing + rad. wastes management),
 - Training of RP staff and information of workers (new players + cultural change),
 - Networking (a nuclear industry challenge),
 - Facility knowledge (characterisation),
 - Source term management (full system decontamination, contamination, etc.).
 - But:

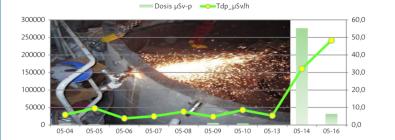

Experience of routine maintenance work (feedback, improvement, culture)

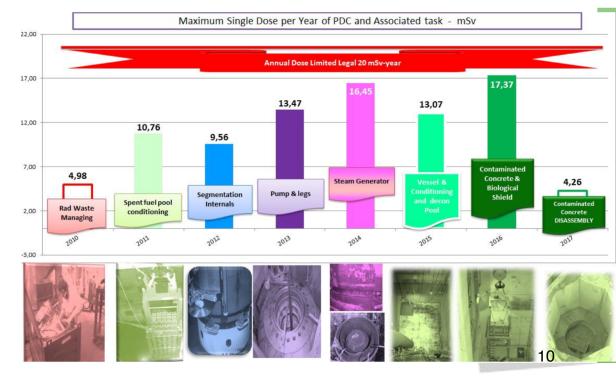
Are we doing good? Are doing ALARA? Is our collective dose target reasonable?

ALARA and decommissioning

CEDN											
	ACTIVITIES	Collective dose (mSv-p)									
	Plant Modifications & General Works	157,84	5,8%				Indiv	vidur	al docos		
	Maintenance & Surveying	384,16	14,2%				Individual doses				
	Main Components	846,00	31,3%			r of persons	s msv.p Individual doses vs colle		Individual doses vs collective doses msv		
	In situ decontamination(tanks/components)	31,96	1,2%		10 mS	Sv -20 mSv José	8000,00		4		
	Spent Fuel Pool conditioning & decontamination	95,79	3,5%	2010	1	Cabrera 0	7000,00		3,5		
	Components dismantling - Containment building	197,47	7,3%	2011	73	2	6000,00		3		
	Components dismantling - other buildings	266,43	9,9%	2012	2	0	5000,00		2,5		
	Biological shielding	141,79	5,2%	2013		15	4000,00		2		
	Contaminated concrete removal	316,92	11,7%	2014	-	24	3000,00		1,5		
	Walls & floors decontamination	36,07	1,3%	2015		22	2000,00		1		
	Decontamination workshop	29,38	1,1%	1			1000,00		0,5		
	Rad Waste management	199,12	7,4%		No.		0,00	2010	2011 2012 2013 2014 2015 2016 ⁰		
	Site restoration	0,00	0,00	11				Coll dos	se NPP Coll dose JC Ave ind dose NPP Ave ind dose JC		
	total	2702,93									

Collective dose (mSv-p) by activity (main components splitted)




	ACTIVITY:	Collective Dose Man- mSv		man-h	
	SURVEILLANCE & MAINTENANCE	384,16		191550	
0	2 - SURVEILLANCE & MAINTENANCE	-	Н-р	Dosis µSv-p	Tdp_µSv/h
02-01	Ocupational Health & Safety		11443	16251	1,4
02-02	Medical Services		58	104	1,8
02-03	Instrumentation Maintenance		4294	9982	2,3
02-04	Mechanical Maintenance		6136	26270	4,3
02-05	Electrical Maintenance		4403	10254	2,3
02-07	Security		1440	1032	0,7
02-08	Radiation Protection		69444	204044	2,9
02-09	Fire Protection		13283	6532	0,5
02-10	Decontamination & Housekeeping		73890	104538	1,4
02-11	General Services		5883	5155	0,9
				9	

	ACTIVITY:			man-h
	Main Components_STEAM GENERATOR			12090
	05 MAIN COMPONENTS : Steam Generator	Н-р	Dosis µSv	-p Tdp_μSv/h
05-04	Scaffolding	704	4143	5,9
05-05	Isolation removal	278	2655	9,6
05-06	Stem pipe removal	364	1381	3,8
05-07	Water supply pipe removal	163	815	5,0
05-08	Instrumentation removal	104	796	7,7
05-09	Steam section removal	1294	6191	4,8
05-10	Supports removal	551	4724	8,6
05-13	Confinement & filtration equipment	187	1006	5,4
05-14	SG Segmentation in situ	8605	276252	. 32,1
05-16	SG Segmentation in the SAS	657	31742	48,3

серп

ALARA and decommissioning

Concluding remarks

серп

- Characterisation strategy during the transition phase (operating to decommissioning) and when work will start is of key importance for the success of the project:
 - Waste management,
 - Occupational exposures,
 - Site remediation (avoid a future legacy)
- Identify requirement for RP staff and workers skills (contamination) to maintain RP (as well as safety) culture to adequate standards,
- Holistic approach for a relevant risk management,
- Engage workers in the project.